

Floating Content: Information Sharing in Urban Areas

Jörg Ott <jo@acm.org> Esa Hyytiä, Pasi Lassila Jussi Kangasharju

Tobias Vaegs

Infrastructure-less Content Sharing...

- Ad-hoc local social network-style information sharing: Digital graffiti w/o servers and infrastructure
- · Leave notes, comments, photos, etc. in places
- · Define reach (area of interest) and lifetime
- Leverage delay-tolerant ad-hoc communication between mobile devices for information replication & acquisition
- · Inherently best effort

...simple examples...

Coupling sharing in location, decoupling in time

- Tourists and locals, sharing context information
- · Going out with friends (bars, theme parks, hiking)

...in Urban Environments?!

- No connectivity (to infrastructure)
- Location privacy
- · Content "privacy"
- · Geographic validity
- Temporal validity
- No user identification

What for?

- · Ride sharing
- · Flea markets
- · Ticket trading
- · Photo sharing
- Anything
 - ephemeral
 - co-located
 - loss-tolerant
 - (time-insensitive)

What's new?

- · Some related concepts have been "floating" around
 - Digital graffiti
 - Geocasting and other approaches in the late 1990's
 - At least as early as 2005 on something similar to floating content
- Often different/limited in scope or using infrastructure
- Our contribution
 - Unique variant of floating content [PerCom 2010]
 - Analytical modeling [Infocom 2011]
 - Thorough evaluation of feasibility [PerCom 2011]
 - Figuring out how to make this work in practice

Two-Pronged Approach to Evaluation

- · Analytical modeling
 - Not really covered in this talk [Infocom 2011]
 - Different scenarios, different mobility models
 - Main result: criticality condition
- Simulations
 - Initially simple simulations to test feasibility
 - First result: Need 1 person per 50m² on average [PerCom 2010]
 - This agrees with the analytical criticality condition
 - Criticality validation + parameter space exploration [Percom 2011]
 - Buffer zone exploration + VANETS in progress

Evaluation Setup

- The ONE Simulator: 4500 x 3400m simulation area
 - Helsinki City Scenario
 - Restless nodes (tourists)
 - Moving around along shortest paths between points of interest
 - · On foot, by car
 - Some trams following regular routes
 - 126, 252, 504 nodes
 - 10m, 50m radio range
 - r = a = 200m, 500m

Contact density distribution • Example: 252 nodes, 10m radio a=r=200m a=r=500m 2588 Alito University School of School of

Operational Considerations: DoS

- Prioritization functions to encourage locality and modesty for replication (and similarly deletion)
 - FIFO
 - RaNDom
 - Smallest Area First: f(a)

Performance characterization

- · Helsinki City Scenario
- Parallel content posted at arbitrary locations
 - 126 nodes, 50m radio, 2 Mbit/s net data rate
 - Message rates: 1, 2, 4 messages per node per hour
- · Mix of floating content messages
 - Random message sizes: [100 KB ... 1000 KB]
 - TTL [30min ... 3 hours]
 - Anchor zones [500m ... 2000m]

Conclusion and Next Steps

- Simple, yet appealing best effort geo cooperation model
- · Workable already for modestly dense scenarios
 - Simulations agree well with theoretical modeling
- Some built-in DoS protection and garbage collection
- · Probabilistic operation and user acceptance?
- · More extensive simulation studies: devices, mobility, traffic
- Implementation for Android: real-world experiments

