Extending DTN into Earth

A Survey of System Implementations and Application Domains

 \otimes \otimes

Dr Artemios G. Voyiatzis, Industrial Systems Institute/RC 'Athena' Visiting Researcher, SPICE

Outline

- ∞ Disruption- and Delay-Tolerant Networking
- Implementations
- Testing and verification
- System and applications
- 🔊 R&D outlook

Internet architecture

- End-to-end, bidirectional path
 - Between any two nodes in the network
- Relatively short round-trip times
 - Usually milliseconds, sometimes seconds, rarely minutes
- Symmetric data rates
 - Same order of magnitude
- So Low error rates
 - Corruption rate 1:5.000 (Paxson, 1997)
- Sustain operation even when nodes disappear
 - Break in small packets, forward as fast as possible
 - Use alternative advertised paths in case of problem

Internet into deep space

∞ Deep space

- Up to 250 Kbps sustainable TCP between Earth and Mars
- Further may not be possible
- Stack limitations (transmission timeouts), enormous round-trip times, asymmetric links, no end-to-end path always available

Delay-Tolerant Networks (DTN)

- Support multiple space protocols
- Sustain operation with delays beyond protocol capabilities
- Receive and store variable-size information
- Forward, when next hop becomes available (days?)
- In-network storage

DTN architecture and beyond

DTN: The quest for a problem (?)

Disruption and delay is the norm

- 🔊 Volume of data
- nobility 🔊
- No end-to-end connectivity
 - 50 Environmental
 - Policy
- Non-IP environments
 - Sensors and industrial networks
- Resource scarcity
 - Disclosed by Lack of infrastructure
 - Occasional crowds
- So Green and sustainable
 - Deptimize, do not overprovision
 - so Solve once, apply many

Implementations 80 7 C3

Early DTN implementations

DTN-RI by Trinity College Dublin

- Pre-RFC 5050
- Developed in C++
- Support Linux, Solaris, Win32 (cygwin), Linux on PDA (ARM), FreeBSD, Mac OS X.

DTN1

- Prototype implementation in C
- Tested on x386 and StrongARM Linux
- No longer in active development

5 BP-RI v1.0.1

- Based on Java
- Compatible with (old) Bundle Protocol v4 Internet Draft

DTN2 reference implementation

- ∞ RFC 5050 reference implementation, written in C++
- Tested on Linux (x64 and 64-bit x86), Mac OS X (PPC and x386)
- Display the source, hosted on SourceForge
- Support TBR, Bonjour, Prophet, DTLSR, and flooding routing
- Extensible XML interface for routing
 - RAPID in Java, HSBD in C++
- ∞ Convergence layer: TCP, UDP, NORM, AX.25, and Bluetooth
- ∞ Extensible XML interface for new layers
 - Underwater Convergence Layer
- External link with Licklider Transmission Protocol (LTP)

ION: A space-oriented implementation

- Spawned by work at JPL for IPN
- 🔊 Written in C
- Implements Bundle Protocol, LTP CL, CCSDS protocols, and Contact Graph Routing (CGR)
- Tested on Linux, Mac OS X, FreeBSD, Solaris, RTEMS, and VxWorks
- ∞ Supports TCP, UDP, and LTP
- ∞ Interoperable with DTN2
- Previously a somehow restricted license (Open Channel Software/Caltech, OCS)
- Starting with version 2.5, hosted on SourceForge under BSD license
- ∞ Version 3.0 contains work by SPICE too ©

IBR-DTN for OpenWRT routers

- Institut fur Betriedsysteme und Rechnerverbund, TU Braunschweig
- ∞ Very portable, slim, and extensible implementation in C++
- ∞ Tested on Linux (x386 and MIPS)
- Runs on embedded systems (wireless AP):
 - Microtik Routerboard 532
 - Netgear WGT634U
 - Linksys WRT54G3G
 - FON-2200
- So CL: support for TCP, UDP, and HTTP
- Routing: Table-based; TCP and UDP discovery; IP neighbor, and epidemic routing

DTN on smartphones

- Portable, personal, multiple connectivity options
 - o 3G, WiFi, Bluetooth, USB, ...
- Bytewalla in Java for Android (KTH, Sweden)
- JavaDTN ported to Windows and Linux (University of Wisconsin)
- DASM for Symbian phones (HUT, Finland)
 - Tested on Nokia Communicator 9300i and 9500
- DTNS60 complete rewrite for Symbian S60 (Aalto, Finland)
 - Tested on Maemo-based Nokia N95 and E90, DT-Talkie on N800 and N810
- IBR-DTN port on OpenMoko platform (NEO FreeRunner)
- So Objective-C implementation for iPhone reported but not available

Wireless sensor networks

- ∞ A WSN can be a "region" in DTN terminology
- DTNLite (UCB, USA)
 - Reliable transfer on sensor networks
 - Based on TinyOS platform, demonstrated on Mica motes
 - Not an RFC 5050 implementation (constrained environment)
- So ContikiDTN for Contiki-based sensors (SICS, Sweden)
 - Interoperate with DTN2 on PC with TCP CL
- IBR-DTN port on hacked iMote2 sensor running OpenEmbedded Linux
 - Support only IEEE 802.15.4 (LowPAN) as a CL

Other implementations

POSTELLATION for embedded systems

- Written in C for embedded systems
- Runs on Windows, Mac OS X, Linux, and RTEMS
- Supports TCP, UDP, and TCP-TLS CL over IPv4 and IPv6
- Available under license
- ∞ RDTN based on Ruby
 - No support for CL
- n pyDTN simulator
 - Based on Python and C++, developed by University of Maryland

Simulation and emulation

Simulators

- ∞ Simulators
 - o NS2
 - o OMNET++
 - DTNsim (remote village and city bus)
 - ONE (superior but lacks of support for low-level protocols)
- 🔊 VDTNsim
 - Extends ONE for vehicular DTN
- 5 Tools
 - DTNperf_2: performance testing, similar to lperf2
 - Wireshark Bundle Protocol decoder over TCP and UDP (also LTP)
 - dtnbone: worldwide collection of DTN nodes and applications
 - DTNtg traffic generator

Testbeds

VDTN@Lab

Laptops and Lego
 Mindstorms NXT with Asus
 PDA phone P527

DOME

- DieselNet in urban areas
- Moving objects on
 schedules routes (buses)

More testbeds

UTMesh

Agricultural monitoring
PEAR (non-DTN) testing
3.000 lines of C

Space 🔊 SPICE testbed

- ∞ TATPA (now UCIT)
- 🔊 ESA GSTVi
- ∞ xLUNA (RTEMS+UML)

Performance

80 19 03

SPICE, Xanthi, Greece

8/5/2012

Performance issues

- Size and capabilities
 - ION on ISS GGBA: 1.5 MB
 - o IBR-DTN: 114 KB
 - DTN2: 22 MB (!) but decreased to 2.6 MB in DISCOS project.
- Storage can be a bottleneck
 - Disk-based vs. memory-based performance (IBR-DTN)
 - Small vs. large bundles (bundle frequency, processing-limited)
 - Cannot saturate a 480 Mbps link (5-500 KB bundles)
 - SD storage even worse
 - High-end machine: 940/600/450
 - DTN2 2.8.0 can be even worse

More performance issues

- ∞ IBR-DTN over IEEE 802.15.4 convergence layer
 - Maximum packet size: 128 bytes
 - Maximum payload: 115 bytes
 - Maximum bundle protocol payload size: 40 bytes
 - Experiment on iMote2: 4.6 Kbps instead of 250 Kbps
- Effect of security processing
 - o Bandwidth
 - o Energy
 - Implementation-specific (experiments with BouncyCastle)
- Interaction with convergence layers
 - Bundle size, block size, fragmentation, environment ...
 - NORM (NACK-oriented Reliable Multicast, RFC 5740) outperforms TCP on AX.25 links.

Terrestrial applications 80 22 03

Military applications

- so Airborne networks
 - Dynamic nature of topology
- naval networks
 - Multiple types of networks
 - DTN as a unifying layer
- So CONDOR for Marine Corps
 - DTN2 software ported on a CISCO IDS module (SBC)
 - Cisco 3752 router
 - Support for Space Communication Protocol Standard Transport Protocol (SCPS-TP) ad DTN-enabled web proxy
- Underwater communications
 - Acoustic signals of 1.500 m/sec
 - DTN2 external convergence layer (UCL) based on XML messaging
 - Field test by NURC and University of Porto in Italy (September 2010)
 - DTN merging two different networks (acoustic and RF)

Connectivity in developing areas

- Human-oriented communications
- DakNet for rural areas in Cambodia and India
 - Bus, motorcycle, bicycle as a "data mule"
- 5 KioskNet
 - Pilot deployment and prototype re-design
- 50 Teleconsultation services in Ghana
 - Transmission of high-bandwidth, non-real-time information
 - Utilize Diaspora professionals

Disconnected areas

- padjelenta national park in Laponia, Sweden
 - UNESCO World Heritage site
- Saami Nework Connectivity (SNC) and N4C
 - Basic Internet services to the herders
- So ExtremeComm
 - Infrastructure setups in Indian Himalayan
- 50 Chromium mines in Finland
 - Pilot DTN demonstration using ALIX.3D boards and mobile phones

Environment and wildlife monitoring

🔊 ZebraNet

- Social behavior and movement of zebras in Kenya (2004)
- Hardware design for long-term unmonitored operations
- Discrete Section Monitoring in Ireland
 - Use boats as mules
 - Cost-effective compared to cellular transmission
- 50 LUSTER in Eastern Shore Virginia
 - SenQ at sensor node layer
 - DTN as storage layer (802.15.4 and 802.11) for nearby TinyOS sensors
 - Back-end server detects missing values and queries for them
- 🔊 EMMA @ Braunschweig
 - Cost-efficient, large-scale urban environment monitoring
 - Public transportation
- 50 MANA in North-East Greenland
 - Sensor network for year-round lake monitoring
 - Harsh conditions and impossible maintenance

Vehicular DTN

- ∞ New: Bundle Layer under IP
- New: separate data and control plane
 - Signaling messages for node type and speed, physical link rate and range, energy constraints, storage constraints, ...
- so Control plane on Bluetooth, data plane on WiFi
- 50 Works only under UDP
- Similar work: IP-over-DTN
 - Asynchronous communication
 - Carry up to 1.500 bytes
 - Use IP-to-DTN mapping (like ARP)
 - Prototype implementation using PEAR (potential-based entropy adaptive routing)

Traffic engineering

50 TrainNet

- Racks of portable hard disks in trains and stations
- Transport latency-insensitive information
- so Air carriers and airports
 - Reachability problem; flight schedule among all cities
- 50 NetStitcher
 - Bulk transfers between dispersed datacenters
 - Predict future bandwidth availability among datacenters
 - Simulations and live deployment on a CDN: 5x bandwidth savings

Urban areas

- 🔊 DieselNet in Amherst, MA
 - 40 buses around campus (DOME)
- So Content sharing and distribution to commuters
 - Also, accessing Twitter and web search from a bus
- User Provided Networks (UPN)
 - DTN approach in providing upload bandwidth for passing-by people
- BikeNet
 - Collect information for routes and rides
 - Dual-link routing
- Smart caching
 - High-speed video streaming over episodic connections in highways
- Maritime communication environments
 - WiMax-based maritime mesh network; cheaper than satellite
 - No energy constraints; limited by sea conditions
 - Range of 35 km for ship-to-base and 20 km for ship-to-ship
 - DTN routing (epidemic and spray-and-wait) achieve better packet delivery ratio

Emergency relief operations

- DTN can interface multiple networks
 - Space, satellite, underwater, HTTP, UDP/IP, AX.25, ...
- Infrastructure may not be available
- DTN over AX.25 allow more ad hoc, self-configuring network formation necessary on an emergency
- Situational awareness with help of volunteers
 - \circ Redundant information
 - Missing information
 - Security and privacy concerns on device sharing
 - Information integrity

Outlook ∞ 31 c3

Research problems looking for a solution

Research

- 50 Control plane
 - Link and routes; storage and congestion; time and network management.

∞ BP and header processing

- Reliability and performance
- Alternative stacks
- Resource sharing
 - Policies, security, and privacy
- Transmit-delay tradeoffs
 - Network capacity, energy

Development

- ∞ Systems
 - Bundle layer firewall
 - High-speed DTN
 - Efficient routing
 - Port beyond Linux
- 5 Tools
 - BSP decoder
 - BSP interoperability
 - Bundle injector
 - Performance evaluation

Applications looking for a DTN solution

So Large areas-expensive always on

- Social sensors
- Remote telemetry (e.g. agriculture)
- Ships and maritime
- E-learning

Network outages

- Emergency response
- \circ Crowds
- Smart cache and streaming
- o ICTD

n Bridges

Industrial networks (incl. health and sensors)

Thank you!

